Effect of important food sources of fructose-containing sugars on non-alcoholic fatty liver disease: a systematic review and meta-analysis of controlled trials

Danielle Lee, Author, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper
Presenting Author

Laura Chiavaroli, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Sabrina Ayoub-Charette, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Tauseef Khan, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Katy Qi, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Rodney Au-Yeung, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Amna Ahmed, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Qi Liu, Coauthor, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Annette Cheung, Coauthor, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
John Sievenpiper

Sonia Blanco Mejia, Coauthor, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
John Sievenpiper

Russell de Souza, Coauthor, Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
John Sievenpiper

Thomas Wolever, Coauthor, INQUIS Clinical Research Ltd. (formerly GI Labs), Toronto, Ontario, Canada
John Sievenpiper
Fructose as a source of excess calories increases non-alcoholic fatty liver disease (NAFLD) markers. Whether this effect is mediated by the food matrix is unknown.

We conducted a systematic review and meta-analysis of controlled feeding trials in participants with and without diabetes assessing the effect of important food sources of fructose-containing sugars at different levels of energy control on NAFLD markers (NCT02716870).

MEDLINE, Embase, and Cochrane Library were searched through January 10, 2020 for controlled trials ≥7 days. Four trial designs were prespecified based on energy control: substitution (energy-matched replacement of sugars by other macronutrients); addition (excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced by other macronutrients). The primary outcome was intrahepatocellular lipid (IHCL). Secondary outcomes were alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Independent reviewers extracted data and assessed risk of bias. Certainty of the evidence was assessed by GRADE. We included 39 trials (63 trial comparisons, n=1,404) assessing the effect of eight food sources (sugar-sweetened beverages [SSBs]; sweetened dairy alternative [soy]; fruit juice; fruit; dried fruit; baked goods, desserts, and sweets; added nutritive sweetener; and mixed sources) across four energy levels. Total fructose-containing sugars increased IHCL in addition trials (standardized mean difference=1.69 [95% CI, 1.00-2.37], P<0.001), with no effect in substitution, subtraction, and ad libitum trials. There was evidence of interaction by source in addition trials with SSBs increasing IHCL and ALT, and mixed sources increasing AST. Effects were consistent in people with and without diabetes. The overall certainty of evidence was high for SSBs on IHCL and ALT in addition trials and moderate to very low for all other comparisons.

Energy control and food source appear to mediate the effect of fructose-containing sugars on NAFLD markers in people with and without diabetes. High certainty evidence suggests that SSBs providing excess energy increase NAFLD markers, while the evidence is less certain that mixed sources share the same effect and other food sources do not. More high-quality randomized trials of different food sources are needed to improve our estimates.

(Primary funding: Diabetes Canada)